周口超長不銹鋼無縫盤管新聞
這種凝固形式只是在合金液中有足夠的鐵素體形成元素(鉻的鉬)在亞晶界處偏聚的條件下才會發生。由于這種鐵素體富含有較多的鐵素體穩定元素Ni,能夠穩定存在,因此在隨后的冷卻過程中不會再繼續發生相變或分解而得以保留,而奧氏體晶粒呈現出方向性極強的樹枝狀或胞狀生長。最終形成室溫下奧氏體基體中分布少量共晶鐵素體的顯微組織。
FA型凝固模式及骨架狀和板條狀鐵素體組織
FA和F型凝固模式的初生相均為δ鐵素體。FA型凝固模式(1.48< Creq/Nieq<2.0)是以鐵素體為先析出相,在液相尚未完全凝固前,通過包-共晶反應形成了一定數量的奧氏體,分布在鐵素體凝固邊界,隨溫度的降低,大部分初生鐵素體通過固態相變轉變為奧氏體,余下的少量鐵素體則呈骨架狀或板條狀彌散分布于奧氏體基體中,共同構成最終的室溫組織。
周口超長不銹鋼無縫盤管簡介
如果這一方案既能滿足盤管的質量要求,又最大限度地降低各種成本費用、生產準備周期,那么,它所形成的方案將是最佳方案。我們已經知道,雖然拉彎成形成形此盤管是可行的,但不能形成盤管的下陷。所以盤管的下陷只能采用其他的方法成形。在材料分析中,我們知道,此材料在常溫下成形有一定難度,加之盤管的材料厚度為啄2.03mm,下陷深度1.5mm,尤其是拉彎成形后材料硬度增大,成形困難,貼胎度無法保證。經查閱資料,該材料在冷成形后可以通過進行固溶熱處理消除內應力,使盤管容易成形,所以,我們可以利用將拉彎后的盤管進行固溶熱處理(溫度1052益依14)后再成形。2.2加工成形方案的初步確定,
綜合以上的分析、論證,可以得出以下結論:在充分考慮質量、成本、周期三因素的前提下,針對此類盤管的最佳加工方案只能是:拉彎+固溶熱處理+成形下陷+手工敲修的復合成形。雖然從嚴格意義上說,這一加工方案是幾種加工方法的“大雜燴”,但它充分利用了公司內部的設備資源。
周口超長不銹鋼無縫盤管知識
不銹鋼盤管在較高應力時蠕變斷口處晶粒發生了一定量的塑性變形,晶粒略被拉長。除主斷口外,在斷口附近三晶粒交合點及晶界突緣處發現有少量分散孤立的楔形裂紋或洞型裂紋,其斷裂方式主要是沿晶的。同時,斷口邊緣也呈現少量穿晶型斷裂跡象,約占斷口的25%,表明不銹鋼盤管為穿晶與沿晶混合型斷裂。相應基體組織未發生明顯變化。而圖3.8c中由于較低應力長時蠕變作用晶界處析出相則顯著增多,尺寸變大。斷口處幾乎未觀察到穿晶型斷裂,基本為沿晶斷裂特征形貌,同時,在較高溫和應力作用下,由蠕變造成的晶界裂紋數量和尺寸都有增加。值得注意的是,在基體中觀察到裂紋沿晶界長大連接而成的裂紋段,長約為11.3um,并垂直于拉應力方向(箭頭1),這與傳統理論認為裂紋擴展優先沿切應力方向的界面上進行是不同的。文獻研究認為,其沿晶斷裂主要原因是在較高溫度、較低應力水平下,晶界滑移時遇晶界上的第二相或三晶粒交合點,滑移將受阻,從而產生應力集中形成空洞源。不銹鋼盤管在拉應力作用下,晶界上的許多空洞優先沿垂直于拉應力軸方向的晶界上長大并相互連接,最終造成蠕變斷裂。